

Target Solenoid Issues

Neutrino Factory Feasibility Study II Video Conference 9 October 2000

Target Solenoid System

- High fields (20 T combined)
- High radiation environment
 - heating
 - damage
- Remote maintenance requirement

Traditional Options

- Bitter-plate technology chosen for Study I
 - high J
 - short-lived but low-cost & easily replaceable
 - co-mingled conductor, insulation, & water
- Hollow-copper technology proposed for Study II
 - -low J
 - long-lived but higher cost & difficult to replace
 - insulation separated from cooling water

Study-II Target and Muon Collabora Decay-Channel Solenoid System

Baseline Hollow-Copper Option

Alternative Bitter-Plate Option

Options Overlaid

Field on-axis, two options

The D-Coil Pair, ORNL ca. 1966

- 3-in-hand, double-pancake winding
- 8-T field on axis
- 10 MW
- $J_{pack} \approx 20 \text{ A/mm}^2$

Note supply and return headers and connections

The Mineral-Insulated Conductor (MIC) options

Solid Core

Hollow Core

J.R. Miller, Video Conf., 10/9/00 Slide 10

From "Development of Radiation-Resistant Magnets for the JHF Project," K.R. Tanaka et al., presented at MT-16 (preprint provided by Bob Weggel). However, general concept dates back at least to Art Harvey, LLNL and Jim Luton, ORNL, early 1970s.

Limitations

- Conductor length
 - Present lengths in the 30 60-m range
- Operating voltage
 - Uncertain, limited by termination design
- Practical winding-pack current density
 - approx. 10 A/mm² or less for HC-MIC
 - maybe 60 A/mm² or higher for SC-MIC

Solid-core MIC, layer wound, with cross-flow cooling

Proposed approach

- Optimize two options for comparison
- Identify critical issues for each
- Define essential R&D